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A series of experiments has been performed on a laminar flat-plate boundary layer 
undergoing transition to turbulence. Reproducible disturbances were introduced via a 
loudspeaker embedded at some upstream location. Time series of the velocity 
fluctuations were obtained at a sequence of downstream locations using hot-wire 
anemometry and the phase portraits were reconstructed at each position. A new 
technique has been used to estimate the number of independent modes. Nonlinear 
maps were then fitted that transform the portrait at one streamwise location onto the 
portrait at the neighbouring downstream position. In this way the spatial evolution of 
disturbances is modelled explicitly. These maps agree with classical linear stability 
theory for small disturbances, and appear to give rise to ‘Smale horse-shoe’-like 
behaviour for larger amplitude disturbances. This may provide a mechanism for 
generating sensitive dependence on initial conditions, and illustrates a possible role for 
low-dimensional chaos in boundary-layer transition. 

1. Introduction 
The identification of coherent structures in turbulent flows and attempts to 

understand their evolution and interactions are currently active fields of research, see 
Hussain (1986). The conjecture is that certain aspects of such flows may be dominated 
by these structures and hence make the flow amenable to deterministic modelling. 
Coherent structures like hairpin vortices are generated during the transition process 
and so the study of transition itself may be an important step towards understanding 
turbulence. 

In particular, this work is concerned with the transition from a laminar flow to 
turbulence in the boundary layer that develops over a flat plate at zero incidence to the 
free stream. This classical arrangement is an archetype for smooth aerofoils and so is 
of additional practical importance. The Tollmien-Schlichting modal selection process 
for infinitesimal harmonic perturbations of a steady parallel boundary layer 
successfully predicts the evolution of small-amplitude disturbances. For larger 
disturbances, however, the presence of nonlinearity becomes significant and new 
techniques must be developed to study the dynamical processes involved in the 
generation of complex fluid behaviour. 

In this paper a novel method based on ideas from dynamical systems theory is 
presented and applied to time series obtained from experiments carried out in the low- 
turbulence wind tunnel in the Engineering Department of Cambridge University. 
Unlike previous approaches, this method incorporates an explicit spatial element into 
the analysis. This is essential because, in common with many shear-layer flows, the 
instability is convective, see Gaster (1962). This statement expresses the fact that at any 
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given measurement station the amplitude of a harmonic excitation, while constant in 
time, varies exponentially with position, i.e. A cc eAx instead of the usual e” (which 
would correspond to an absolute instability). 

The spatial evolution is represented by a series of nonlinear maps which transform 
points from one reconstructed phase portrait to another taken from a different 
streamwise position in the boundary layer. These maps may be called ‘spatial’ since, 
under iteration, they propagate disturbances in space rather than in time. A brief 
account of the experiment is given in $2. The data analysis techniques are presented in 
$ 3  and examples of applications to experimental data are given in $4. The principal 
findings of this research are summarized in $5 .  

2. The experiment 
2.1. Experimental arrangement 

The experiments were carried out on a flat plate mounted vertically in the 
0.914 x 0.914 m working section of a small closed-return wind tunnel. The wind tunnel 
was developed to have extremely low levels of background turbulence so that the 
behaviour of controlled excitations would not be masked. This was achieved through 
the use of a 5 mm deep paper honeycomb followed by four fine mesh screens. The 
r.m.s. turbulence intensity at the inlet of the working section was less than 0.01 % of 
the free-stream velocity, 18.0 m s-I, within the frequency range 4-4000 Hz, see Gaster 
(1990). The plate and flap arrangement were set up to achieve an essentially zero 
pressure gradient over the region where measurements were made. 

A hot-wire anemometer was mounted on a computer-controlled traversing system 
attached to the side panel of the tunnel, enabling three-dimensional positioning of the 
probe. The electrical signal generated by a DISA 55MO 1 constant-temperature 
anemometer unit was processed by a low-noise pre-amplifier and band-pass filter which 
admits the range 4-4000 Hz. The resulting signal was then digitized by a 12-bit A-D 
(analogue to digital) converter fitted with a further computer-controlled amplification 
stage. 

The excitation of the flow was provided by a buried loudspeaker that communicated 
with the boundary layer via a small hole 200mm from the leading edge on the 
centreline of the plate. Some noise was inevitably generated by the presence of the 
driving hole, but by interposing some felt material between the loudspeaker and the 
hole, this was reduced to an acceptable level. 

Motivated by the work of Gaster (1990), an excitation signal consisting of a sine 
wave with added white noise was employed. The frequency of the sine wave was 
200 Hz, placing it within the band of amplified Tollmien-Schlichting waves. The noise 
was obtained by adding computer-generated random numbers to the sine wave, and so 
was exactly reproducible (they were calculated using an algorithm from Press et al. 
1986). The purpose of adding this noise was to ‘drown out’ the ubiquitous low-level 
background noise, effectively making the broadband component of the signal 
reproducible. This is important because Gaster (1990) demonstrated that breakdown 
can occur through the nonlinear coupling of the fundamental driving frequency and 
the broadband excitations always present. 

The A-D collecting the data was phase locked with the D-A driving the loudspeaker 
with the computer-generated signal. A sampling frequency of 8192 Hz was used to 
provide approximately 40 points per cycle of the sine wave. This high sampling 
frequency is found to be necessary so as to obtain good phase portrait reconstructions 
(see $3.1). 
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FIGURE 1. Hot-wire signals taken at different streamwise locations showing the progressive increase 
in complexity. They are all plotted with the same vertical scaling, and each has been shifted 
horizontally by the mean convection speed. 

2.2. Experimental procedure 
The experiment consisted of collecting hot-wire signals from various locations directly 
downstream from the source. All the hot-wire signals were obtained with the wire 
located at a non-dimensional distance 7 = 1.5 from the plate where 7 = y( U/xv)i, x is 
the distance from the leading edge, y is the distance from the plate, U is the free-stream 
velocity and v is the kinematic viscosity of air. This value of 7 corresponds to the 
strongest maximum of the Tollmien-Schlichting eigenfunction, i.e. the distance from 
the plate at which the amplitude of the Tollmien-Schlichting waves is greatest. 

The hot-wire anemometer signals were recorded at 50 mm intervals from 300 mm to 
1100 mm from the leading edge of the plate. At each station, sixty realizations were 
ensembled to improve the signal-to-noise ratio. This is possible because the signals are 
highly reproducible and so any random fluctuations due to background noise can be 
averaged out. The standard deviation of the different realizations was monitored to 
check that a satisfactory level of reproducibility was being maintained. The standard 
deviation is found to increase at the most downstream locations. This may be due 
either to the flow becoming more sensitive to the presence of small background 
disturbances, or perhaps to the existence of a multiplicity of final states which the 
solution can jump between. The latter possibility would be very intriguing but cannot 
be investigated with the present data since only the averaged data and the standard 
deviations were stored (saving individual realizations would have increased the data 
storage requirements sixty-fold). 

2.3. Experimental results 
The ensembled time series are close to a sinusoidal form over the upstream region of 
the plate, but further downstream the time series become increasingly modulated and 
complicated, see figure 1. There is a lag time at the beginning of each time series due 
to the time taken for disturbances introduced at the source to propagate to the 
measured position. By comparing the lag time for two adjacent positions it is possible 
to estimate the speed of propagation, which comes to 68 time steps or approximately 
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FIGURE 2. Isometric graph of power spectra over a range of streamwise locations showing the 
evolution of spectral components as the disturbance propagates downstream. 

0.33U, comparing well with the linear stability results given in White (1974). This phase 
velocity is expected to have a slight variation in the streamwise direction as the 
boundary layer grows, but the effect is small over the region of interest. All the time 
series have been shifted relative to one another by 68 time steps. The residual 
movement to the left is a consequence of the dispersion of the initially sharp switch- 
on of the signal. 

Power spectra of the records have been calculated at each x position and are plotted 
as an isometric graph in figure 2. The calculations have been performed on the part of 
the time series after the lag time and where the oscillations are well established; the 
signal here is effectively stationary. The fundamental 200 Hz component is clearly 
visible and, in addition, the first harmonic and a subharmonic broadband appear. The 
harmonic component is not believed to be a consequence of any distortion in the 
instrumentation or filtering (M. Gaster 1993 personal communication). In figure 3 the 
linear stability of the frequency-Reynolds-number parameter space is shown. The 
frequency and Reynolds number are both made non-dimensional with respect to the 
boundary-layer displacement thickness : 

and 

U 
w =  

Re = 1.'72(Fr, 

where f is the frequency (measured in Hz) of the disturbance. The numerical factor 
follows from the assumption of a Blasius profile. Hence w and Re increase with distance 
from the leading edge. The region enclosed within the neutral stability curve N" is 
unstable, that outside is stable; this curve is taken from the tabulated values given in 
Jordinson (1970). A 200Hz disturbance propagates along the ray AB shown in 
figure 3, and a 400 Hz disturbance propagates along the ray CD. The points A and C 
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FIGURE 3. Stability map for steady flow over a flat plate. Dimensionless frequency is measured along 
the vertical axis, Reynolds number along the horizontal axis (both made dimensionless using the 
displacement thickness). The region within the neutral stability curve NN’ is unstable. AB and CD 
correspond to 200 Hz and 400 Hz disturbances respectively. Circles mark the location of the driving 
hole and crosses show the measurement stations. 

correspond to the location of the driving hole, and the crosses correspond to the 
positions at which measurements were made. 

The forcing mechanism may itself be nonlinear and so in addition to the fundamental 
200 Hz signal, harmonics are also expected to be introduced into the boundary layer. 
At the driving hole, the linear theory predicts that the 200 Hz signal should decay while 
a 400 Hz signal should grow. However, at the first measuring sites, the fundamental 
200 Hz signal should now be amplified, while the 400 Hz harmonic should decay. In 
the experiment, see figure 2, the 200 Hz signal can be seen to grow initially in 
amplitude, and the first harmonic, arising from nonlinear distortion at the driving hole, 
is observed to decay for the first few measurement stations. Thus the behaviour of the 
spectra for the signals captured nearest the leading edge are consistent with the linear 
theory. 

Beyond the first few measurement positions, the first harmonic also starts to grow. 
This is clearly incompatible with the linear theory and must arise from the effects of 
nonlinearity in the fluid flow. Further downstream, the broadband component 
increases dramatically in amplitude. 

3. Spatio-temporal data analysis 
3.1. The basic ideas 

Each data set is projected onto an optimally constructed phase space using the 
technique of Broomhead & King (1986) based on the ‘method of delays’, see Takens 
(1981). An n-window, which selects n consecutive records from the time series, is passed 
along the data set to form N n-dimensional position vectors. Singular value 
decomposition is then used to determine a basis which spans these position vectors. 
The SVD algorithm given in Press et al. (1986) was employed. A log-graph of the 
singular values and graphs of the first 10 singular vectors obtained from a typical hot- 
wire time series are shown in figure 4. An embedding window of n = 20 was used, 
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FIGURE 4. SVD of the trajectory matrix formed from the time series at 800 mm from the leading 
edge. The singular values are shown on a log plot in (a) and the first ten singular vectors in (b). 

corresponding approximately to the first minimum of the autocorrelation function. 
There are a small number singular values significant above the noise, the first two are 
of almost equal energy and the corresponding singular vectors form a pair of sine and 
cosine waves. They have a period equal to twice the window length and hence 
correspond to the fundamental 200 Hz component of the signal which dominates both 
the autocorrelation function and the singular spectrum. The additional singular 
vectors have shapes reminiscent of successively higher order polynomials. 

However, although the singular vectors give a set of linearly independent modes, 
some of these may have arisen from nonlinear interactions (analogous to harmonics in 
the Fourier spectrum). A new technique for estimating the energy in each mode that 
can be attributed to nonlinearity has been applied to this data set - for full details, see 
Healey (1993). 

In that paper it is shown that if, say, the (k+l)th singular vector arises from 
nonlinearity then there exists a nonlinear function that relates the data projected onto 
this vector to the data projected onto the first k singular vectors. The method involves 
fitting radial basis functions to test for possible nonlinear relationships among the 
singular vectors. Radial basis functions were developed as a convenient multi- 
dimensional interpolant, see Powell (1985). They have been used successfully to 
model the evolution on reconstructed attractors, see Casdagli (1989), enabling short- 
term prediction of chaotic time series. An important feature is that they can be used 
with irregularly distributed data points. 

It is straightforward to extend the basic interpolation technique to give a least- 
squares fit. The interpolation (i.e. when the function passes through all the data points) 
involves inverting a square matrix. The least-squares fit is obtained by solving the over- 
determined problem posed by using more data points than free parameters. This is 
achieved using the singular value decomposition of the corresponding rectangular 
matrix (which is described more fully below). 

However, in this application, it is not the evolution op1 the attractor that is to be 
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interactions are removed, u’ (circles), on a log-scale for the data set in figure 4. 
FIGURE 5. Comparison of singular values, (crosses), and the energy remaining when nonlinear 

modelled, but the graph of the attractor projected on one singular vector versus the 
attractor projected onto the other singular vectors. The approach is to fit a large 
number of points on the attractor to a model with relatively few parameters (2000 
points and 100 parameters has been used throughout). The standard deviation between 
the data points and the model, d, is then calculated and compared to the standard 
deviation of the data itself, CT, given by the corresponding singular value. The quantity 
g’ is, effectively, the energy remaining in the mode after nonlinearity has been 
accounted for. In general, 2000 data points will only be well approximated by a 100- 
parameter model if the data are correlated and lie on a well-defined surface. This will 
be the case if the data projected onto one singular vector are a simple nonlinear 
function of the data projected onto the other singular vectors. The deviation between 
data and model will then be very much smaller than the deviation of the data along the 
chosen axis (d < cr). On the other hand, if (T’ E cr then the model is unable to detect 
any correlations among the data and no nonlinear dependence has been found among 
the singular vectors. 

When this method is applied to the data of figure 4 the singular spectrum shown in 
figure 5 is obtained. The crosses show the singular values, CT, and the circles show the 
energy remaining after the nonlinearity has been removed, G’, on a log scale. 

It is now clear that there are only three truly independent modes - the fourth and 
fifth singular values are related to ‘harmonics’ in the spectrum. This conclusion can be 
confirmed by comparing the (T and d spectra as they evolve downstream. Figure 6(a)  
shows how the singular spectrum varies with streamwise position. The two most 
energetic singular values correspond to the fundamental forcing frequency and their 
growth is qualitatively similar to that of the fundamental in the Fourier spectrum, cf. 
figure 2. The fourth and fifth singular values ape the first harmonic in the Fourier 
spectrum, cf. figure 2. Figure 6(b)  shows the spectra after nonlinearity has been 
accounted for. The first two are unchanged, but the fourth and fifth are almost 
completely suppressed over most of the plate. This is consistent with the interpretation 
of these singular values obtained from the analysis outlined briefly above. Further 
downstream a fourth mode emerges, and more would be expected yet further 
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FIGURE 6. (a) Isometric graph of how the singular spectrum, CT, evolves in the streamwise direction. 
(b) Isometric graph of how the energy in the singular spectrum after the nonlinear interactions have 
been removed, u', evolves in the streamwise direction. 

0.1 o'2 1 
3 

0.1 \ 
0 1  

-0 
U ' ( m l S )  " 

U ' ( m l S )  

FIGURE 7. The reconstructed phase portrait projected onto the first three singular 
vectors for the data in figure 4. 

downstream as transition progresses. However, for the purposes of this work, only the 
first three modes will be used to characterize the signals since the other modes are lost 
in the noise floor, see figure 6(b). This approximation is expected to break down for 
the most-downstream data sets, but to be adequate for the rest. 

The phase portrait, projected onto the first three singular vectors is shown in 
figure 7. Initially the trajectory is confined to a small neighbourhood near the origin of 
the phase space - this corresponds to the section of the time series measured before the 
disturbance introduced by the loudspeaker is convected downstream to the hot-wire 
probe. There follows a period of spiralling growth as the leading edge of the 
disturbance sweeps past the probe, followed by a basic circulating motion due to the 
nearly sinusoidal nature of the time series. 



Dynamical systems approach to boundary-layer transition 675 

0.2 . 

u’(m/s) 0 . 

-0.2 . 

FIGURE 8. Augmented phase space showing the spatio-temporal evolution of disturbances. 

The irregular modulation of the sine waves causes the thickening of the phase 
portrait and makes it (at least) three-dimensional. Hence the third singular value may 
be taken to correspond, in some sense, to the subharmonic component of the Fourier 
spectrum. This modulation can be traced back to the random numbers added to the 
fundamental sine wave to form the original forcing data. Thus the evolution is not 
deterministic in time in the sense that the future dynamics cannot be predicted from a 
knowledge of the previous history. For example, the onset of spiralling in figure 7 
cannot be predicted from the initial section of time series. 

Nonetheless, the evolution is deterministic in a spatial sense - a knowledge of the 
time history at an upstream location is sufficient to predict, for example, the onset of 
spiralling at some downstream location (provided the flow is two-dimensional and that 
a suitable convection time can be found). This corresponds to following the disturbance 
in the (x, t )  plane rather than considering vertical slices (time series) which intersect the 
disturbances. 

Therefore, instead of studying a single phase portrait as in figure 7, it is proposed 
that the whole set of phase portraits from all the measurement stations should be 
incorporated in an ‘augmented phase space’ where the position, x, of the probe is 
treated as an additional dimension. In this augmented space a data point on one 
reconstructed phase portrait is connected to its corresponding point on its neighbouring 
downstream portrait. Thus a flow which evolves in x is generated, see figure 8. 

In this augmented phase space, x plays the role normally associated with time, t ,  i.e. 
the independent variable, and at the most-upstream measurement point xo, t generates 
a series of ‘initial conditions’, i.e. a set of points each of which is propagated 
downstream by the flow. 

Phase portraits taken from positions near the excitation source appear at the lower 
left-hand end whereas the portraits from far downstream locations appear at the upper 
right-hand end of the diagram. The exponential growth in space predicted by linear 
theory is clearly visible in the initial stage. As x increases further, however, the 
amplitude of the motion is seen to saturate. This can also be explained by linear theory 
because the boundary layer grows in thickness, and, as discussed in 42.3, the Reynolds 
number and frequency are made dimensionless with respect to the boundary-layer 
displacement thickness, and so they too increase as x increases leading to changing 
growth rates. 



676 J .  J.  Healey 

The fact that the modal selection process varies with streamwise position in a non- 
parallel boundary layer must be incorporated in any modelling scheme. A piecewise 
approach, in which the boundary layer is decomposed into a number of sections, each 
one delimited by the measurement stations on either side may thus be a suitable choice. 
Each section is modelled individually, and a chain of models can then be built up to 
describe the spatio-temporal evolution of the disturbance over the whole boundary 
layer. The model parameters are expected to vary smoothly with x, reflecting the 
smooth increase in boundary-layer thickness. 

It is assumed that a map @, can be found which will transform the set of points {yi} 
on a portrait at position x, to the set of points {y;> on the portrait taken at x,+~: 

Yi+k = @,(Yi>, (3) 
where y;+k,y i ,@,~,92m,  m is the number of significant singular vectors used in the 
embedding (here m = 3) and k is a suitable delay allowing for the time taken for the 
disturbance to convect from x, to x , + ~  (here k = 68). The j th  element of @,, Gnj, is 
composed of a sum of p basis functions b,(yi): 

and the weights, w z j ,  are chosen to minimize 

where /I * 11 denotes the Euclidean norm. This least-squares solution can be readily 
obtained by casting the problem in matrix form and using singular value 
decomposition. The N known values of and yi are substituted into (3) and (4) and 
the resulting N simultaneous equations expressed as 

w Y =f3E, 
N x m  N x p  p x m  

where the ith row of Y' is given by the transpose of y;+,, the element B,, is given by 
b,(y,) and the elements of G? are the weights wzi. The least-squares solution to (6) is 
given by 

where B+ is the left inverse of B and is calculated from its singular value decomposition: 

B = SCCT =j B+ = CX-'ST. 
The decomposition yields three matrices S, Z and C where S and C are orthonormal 
and contain the left and right singular vectors of B and C is diagonal and contains the 
(non-negative) singular values ui. If B is singular then Z-l is replaced by the diagonal 
matrix C+ whose elements are given by 

8 = B+Y, (7) 

(8) 

ail if ui =l= 0 
0 if ui = 0. 

g; = (9) 

When analysing experimental data, B will never be singular, but it may be ill- 
conditioned, so it is necessary to introduce a level of tolerance, 6, and use 
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The use of (10) instead of (9), implying that B has rank r (i.e. r singular values greater 
than E) ,  means that the data only support the use of Y rather than p independent 
parameters (for the basis b, chosen). In this case SVD arranges that p-r  of the 
parameters are linearly dependent on one another. 

3.2. Linear modelling 
It is informative to consider the case of a linear model for Q, since this can be related 
to standard spectral methods. The basis functions b, are then simply the components 
of y i :  

b,(Y,) = Yi,, (1 1) 

where yi, is the 2th component of the position vector yi .  Hence B of (6) has the same 
structure as Y', so, let Y = 6. When the embedding window is very large, each 
embedding vector contains an approximately stationary section of time series, in which 
case the proper orthogonal theorem (which underpins SVD) reduces to the harmonic 
orthogonal decomposition theorem (see Lumley 198 1). Thus the singular vectors are 
now harmonic bases and the singular values are the magnitudes of the Fourier 
components. Now let the embedding window have the same length as the time series. 
N embedding vectors (each of dimension N )  can be constructed by wrapping the end 
of the time series onto its beginning (using the stationarity of the time series). Let X and 
X' be the trajectory matrices so constructed for two time series taken from neighbouring 
measurement stations in the boundary layer. X and X are symmetric Toeplitz matrices 
and their singular values are equal to their eigenvalues and their singular vectors are 
equal to their eigenvectors (this is true for any symmetric matrix). Moreover, since 
these eigenvectors are equivalent to a Fourier basis, the eigenvectors of X and X' are 
equal to one another, and so 

X = SECT = UAUT (12) 

and X' = S'C'cT = UA'UT, (1 3) 

where U are the eigenvectors (Fourier bases) and A and A' are the eigenvalues (Fourier 
coefficients) of X and X' respectively. The matrices Y and Y' are obtained by projecting 
the Toeplitz matrices X and X onto their eigenvectors: Y = XU and Y' = X U ,  and 
thus (6) becomes 

X U  = XUQ. (14) 

Substituting (12) and (13) and (14), and using the orthonormality of U the following 
expression is obtained : 

s = A-~R' .  (1 5)  

This result demonstrates that the linear map S which transforms the data from one x 
station to the next is a diagonal matrix whose elements are the quotients of the Fourier 
coefficients of each of the two original time series. 

Therefore, in the limit of long embedding windows, if a linear model is chosen for 
@ in (4) the resulting map is the same as the one that would be obtained by simply 
dividing the Fourier transform of one series by the Fourier transform of the other 
(although the phase information is lost in this process - in this derivation the relative 
phases are assumed unchanged). 

This rather loose argument should not be regarded as a 'proof' but serves to 
illustrate the relationship between the formulation of ( 3 )  and more familiar techniques. 

When m and n are relatively small (and the elements within the embedding windows 
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are non-stationary), then the linear model equation (3) can be regarded as a ‘low- 
dimensional’ analogue to conventional spectral techniques. This is not the same as 
filtering out low-energy spectral components since the SVD bases are not harmonics. 
Instead, SVD gives the lowest dimensional basis optimized with respect to energy. 
Thus the eigenvalues of SZ (which in general is not diagonal for small m) give the 
stability of the ‘major features’ of the flow, rather than of any particular spectral 
components. 

The attraction of (3) is the ease with which the analysis can be extended to nonlinear 
models and its classical low-dimensional dynamical systems formalism. 

3.3. Nonlinear modelling 
It shall be assumed that for measurement stations that are sufficiently close to one 
another, the evolution of the flow may be modelled by quadratic basis functions in 
addition to the linear terms of the form (1 1) : 

b,(x) = xi xi,  (16) 

where x is some vector, xi one of its components and i and j vary to generate all 
possible quadratic combinations. It might be assumed (naively) that for sufficiently 
close measurement stations purely linear models could be used, but the cumulative 
effect of many linear models is still a linear model, while the cumulative effect of a 
number of quadratic models is a highly nonlinear model (cf. Feigenbaum’s 1-D map). 
This is crucial for the proper modelling of transition. In this work, the model contains 
both linear and quadratic terms. 

The method of $3.1 can now be implemented, but there remains a difficulty. It is not 
known apriori what rank r should be given to B, i.e. what level E should take in (10). 
For example, if the flow is genuinely evolving according to linear relationships, as is the 
case for sufficiently small-amplitude disturbances, then the quadratic bases will be 
superfluous and r could be chosen to utilize only the linear terms. Further downstream, 
the evolution may be strongly quadratic and r should be larger to accommodate the 
quadratic terms, but even then, not all of the quadratic terms may be appropriate. 

Our formula for choosing a value for r is as follows. Instead of using all N vectors 
{ y ; }  and { Y ~ + ~ }  in (6), use only alternate points. The remaining points can then be used 
to test the efficacy of the model - an r.m.s. error can be calculated which measures the 
accuracy of predictions made of unseen data points. The procedure is repeated for a 
range of values of r, and the one which makes the most accurate predictions is chosen. 
Construction of B and its singular value decomposition only have to be performed 
once, and only the weights and r.m.s. errors have to be recalculated. 

4. Application to experimental data 
Quadratic three-dimensional maps have been fitted to the data sets discussed in $2.3. 

The rank of each model has been chosen in accordance with the method outlined at the 
end of $3.3. The behaviour of small-amplitude disturbances are characterized by the 
eigenvalues of the nonlinear maps linearized at the origin of phase space. These 
eigenvalues have been calculated using an algorithm from Press et al. (1986). The 
eigenvalues give the behaviour of the dominant flow features (‘modes ’) and cannot in 
general be identified with particular spectral components. It is convenient to consider 
the natural logarithms of the eigenvalues - then positive real parts correspond to 
exponentially growing modes and negative real parts correspond to exponentially 
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FIGURE 9. x-dependence of the growth rates (non-dimensionalized with respect to boundary-layer 
displacement thickness) estimated from the eigenvalues of the fitted maps linearized at the origin. The 
crosses correspond to the fundamental frequency component, the circles correspond to the 
component associated with the subharmonic band and the dashed line gives the results for the 
fundamental frequency from linear stability analysis. 

decaying modes. These spatial growth rates are then non-dimensionalized with respect 
to the local boundary-layer displacement thickness for comparison with linear theory. 

A graph of the real part of the eigenvalues versus x position is shown in figure 9. The 
horizontal dotted line represents neutrally stable modes. For most of the range there 
is a complex-conjugate pair and one real eigenvalue. Complex eigenvalues represent a 
phase shift. From figure 4 it is apparent that the flow is largely dominated by a pair of 
singular vectors corresponding very closely to the fundamental Fourier component of 
the forcing, and the complex-conjugate pair of eigenvalues can be associated with these 
modes. The real part of this pair is initially positive, increases to a maximum and then 
passes through zero further down the plate, ultimately becoming negative. 

This behaviour is consistent with the linear theory shown in figure 3 ,  i.e. the mode 
is unstable, but with a growth rate which increases to a maximum (as the ray AB 
approaches the centre of the neutral stability curve) then decreases, finally becoming 
negative (after the ray AB has crossed the neutral stability curve). The fact that it has 
an imaginary part is due to the delay k in (3), which can only take integer values, not 
exactly coinciding with the group velocity of the disturbance (causing a small phase 
shift between neighbouring maps). There is quantitative agreement between the growth 
rate of the fundamental frequency predicted by linear theory (from White 1974, dashed 
line) and those estimated using the method of $ 3  (crosses). 

The third eigenvalue is strongly negative over the upstream part of the plate but 
becomes much closer to zero further downstream. This eigenvalue could be interpreted 
as representing the gross behaviour of the subharmonic band in the power spectrum 
- which is the next most dominant feature after the fundamental component. It is clear 
from figure 3 that rays corresponding to low-frequency disturbances will be stable 
upstream and only destabilize sufficiently far downstream. Further down the plate the 
third eigenvalue becomes positive (eventually low-frequency rays will cross the lower 
branch of NN’ in figure 3) while the complex pair become negative giving a saddle 
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FIGURE 10. Series of iterates of one of the fitted maps (using an experimental data set for the initial 
points). The stretching and folding are reminiscent of Smale horseshoe maps, and suggest sensitive 
dependence on initial conditions. x = 900 mrn. 

point in the augmented phase space. This reflects the fact that some frequencies are 
unstable while others are stable. A three-dimensional space is the smallest in which this 
sort of saddle-focus fixed point can exist, but it does capture the basic dynamics of the 
flow (which itself is infinite-dimensional). 

An effect of nonlinearity is that the behaviour away from the origin need not be the 
same as that near the origin, i.e. larger disturbances can evolve differently from small 
disturbances (as is known to be the case in transition). In addition, there exists the 
possibility that more exotic types of behaviour may be present, for example a Smale 
horseshoe map in which repeated stretching and folding lead to sensitive dependence 
on initial conditions and the possibility of chaos (as in the Henon map, see 
Guckenheimer & Holmes 1986). Horseshoe maps can also be generated by homoclinic 
orbits (see Wiggins 1988), and our saddle focus could potentially give rise to 
homoclinicity . 

Having deduced a set of maps, each corresponding to different locations in the 
boundary layer, it is interesting to pick one, for instance far enough down the plate to 
give maps with three eigenvalues of the same magnitude, and to iterate it to see what 
it  does. Figure 10 shows a series of snapshots obtained by iterating one of the maps 
many times. There appears to be evidence for stretching and folding but since the 
points diverge after a fairly small number of steps it is difficult to derive firm 
conclusions (points in the standard Smale horseshoe map also diverge). 

It may be possible to construct more robust maps if say two different data sets, 
measured when different forcing amplitudes were used, are combined to deduce the 
models. In this way a greater volume of phase space would be explored and the 
nonlinear terms would be better supported. Nonlinear modelling of the impulse 
response for a range of excitation amplitudes could be studied and also the role of 
three-dimensional flow effects. 
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5. Conclusions 
A series of experiments has been performed in which the boundary layer was excited 

by a loudspeaker and its response was measured at a number of regularly spaced 
streamwise positions. The resulting time series are projected onto optimally constructed 
phase spaces, and then linked together using the x-coordinate of the measurement 
position as an additional dimension. A new technique for estimating the number of 
independent modes has been applied and shows that only three phase space dimensions 
are needed to describe these data sets. In this way the spatio-temporal evolution of 
disturbances can be studied. Nonlinear maps have been fitted to the data to model the 
spatial growth of the signal. The properties of these maps are consistent with classical 
linear stability theory for small-amplitude disturbances, and at larger amplitudes give 
rise to more complicated dynamics involving the stretching and folding of phase space. 
We believe that this is the first time that this behaviour has been deduced from 
experimental ‘open flow’ fluid data. 

The method explicitly incorporates non-parallel effects and the inherent convective 
nature of the boundary layer. For this reason it may be applicable to many other types 
of shear-layer flows. Research is now being carried out to investigate the results of 
using different sorts of forcing to drive the loudspeaker, and to assess its potential to 
act as a general boundary-layer predictor. 

This work has benefitted from the discussions with Professor Gaster and other 
members of the Transition Research Group in the Cambridge University Engineering 
Department. The author was supported by the SERC (UK). 
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